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1Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, Teknikokullar, 06500 Ankara,
Turkey; e-mail: naktekin@quark.fef.gazi.edu.tr

January 3, 2000; revised January 25, 2001

A finite-size scaling function of the Privman–Fisher form is proposed for the
singular part of the free-energy density of the four-dimensional Ising model. It
leads to the finite-size scaling relations available and to the prediction of new
ones.
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The conventional finite-size scaling theory (1) is not applicable for the Ising
model at and above the upper critical dimension du=4. For the Ising model
in the dimensionality d > du the Privman–Fisher hypothesis (2) for the sin-
gular part of the free-energy density of a hypercubic finite system Ld of
linear dimension L with periodic boundary conditions was adapted. (3) The
predictions derived from it were tested and verified numerically for d=5, (4)

d=6 (5) and d=7. (6) It was adapted also for the O(N) model (N \ 2) for a
finite system having the general geometry L (d−dŒ)×.dŒ (dŒ [ 2) with perio-
dic boundary conditions. (7) It reduces to the Ising case for dŒ=0. For the
four-dimensional Ising model the finite-size scaling relations are derived
from the theories based on the renormalization group theory. They yield
the free energy correct to leading logarithms. One of these, (8) called the
renormalized mean field theory, gives a rounded peak for a finite-system
phase transition. It predicts the finite-size scaling relations for the specific
heat, (8, 9) the magnetic susceptibility and the Binder cumulant. (9, 10) In the
other theory (11) a perturbative renormalization group method is used in
deriving the free-energy density. By using the partition-function zeroes cal-
culated from it the finite-size scaling relations for the specific heat and the



magnetic susceptibility are obtained. Both theories predict (Tc−Tc(L)) 3

L −2 log −1/6 L for the finite-size shift of the critical temperature where Tc(L)
and Tc are the critical temperatures for the finite and infinite systems,
respectively. For the O(N) model in the large N limit the finite-size scaling
relation for the magnetic susceptibility (12) is found to be the same as the one
for the Ising model. The Privman–Fisher hypothesis (2) for the singular part
of the free-energy density of a finite system having the general geometry
L (d−dŒ)×.dŒ (dŒ [ 2) with periodic boundary conditions was adapted also
for the spherical model in d=du. (13)

The singular part of the free-energy density f (S)L (t, h) of a hypercubic
finite system Ld with periodic boundary conditions for d < du is given by
Privman and Fisher (2) as:

f (S)L (t, h)=L −dY(C1tL1/n, C2hLD/n), tQ 0, hQ 0, LQ. (1)

where D is the gap exponent, n is the critical exponent for the correlation
length for the infinite system, t=(T−Tc)/Tc is the reduced temperature
and h is the reduced external magnetic field. The scale factors C1 and C2 are
the only nonuniversal system-dependent parameters, that is, the scaling
function Y(x, y) is universal, with no further nonuniversal prefactor.

In the present study the Privman–Fisher hypothesis for the singular
part of the free-energy density f (S)L (t, h) of a hypercubic finite system Ld

with periodic boundary conditions is adapted for the Ising model in d=4
dimensions, by proposing the finite-size scaling function Y(x, y), correct to
leading logarithms, as below:

f (S)L (t, h)=L −4Y(C1tL2 log1/6 L, C2hL3 log1/4 L),

tQ 0, hQ 0, LQ. (2)

In getting this expression for Y(x, y), f (S)L (t, h) is assumed to have the
Privman–Fisher form with the explicit L-dependence of x and y not known
a priori. The expressions for the magnetic susceptibility qL(t, h) and the
singular part of the specific heat C (S)L (t, h) derived from it are evaluated at
t=0 and h=0. These and the knowledge of qL(0, 0) 3 L2 log1/2 L and
C (S)L (0, 0) 3 log1/3 L (8, 9, 11) determine the L-dependence of x and y as in
Eq. (2). For the Ising model in d=du, the expression for f

(S)
L (t, h) derived

starting with the renormalization group equations in differential form (14)

reduces to the one given in Eq. (2) for LQ. and confirms it. For the
spherical model in d=4 dimensions for a hypercube (dŒ=0) with periodic
boundary conditions, (13, 15) f (S)L (t, h) differs from the one in Eq. (2) for the
Ising case in the first variable: x=C1tL2 log −1/2 L. From Eq. (2) the finite-
size scaling expressions for the magnetization ML(t, h), the magnetic
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susceptibility qL(t, h), the singular part of the specific heat C
(S)
L (t, h), and

the Binder cumulant (10) gL(t, h) can be derived as below:

ML(t, h)=−
“fL
“h

=L −1 log1/4 (L) C2U(C1tL2 log1/6 L, C2hL3 log1/4 L) (3)

qL(t, h)=−
“
2fL
“h2

=L2 log1/2(L) C22V(C1tL
2 log1/6 L, C2hL3 log1/4 L) (4)

C (S)L (t, h)=−
“
2fL
“t2

=log1/3(L) C21W(C1tL2 log1/6 L, C2hL3 log1/4 L) (5)

gL(t, h)=
q (4)L
L4q2L

=G(C1tL2 log1/6 L, C2hL3 log1/4 L) (6)

with the fourth derivative given by q (4)L =−“4fL/“h4. They can be rewritten
in more informative forms as follows:

ML(t, h)=L −b/n log1/4(L) C2U(C1tL2 log1/6 L, C2hL3 log1/4 L) (7)

qL(t, h)=Lc/n log1/2(L) C22V(C1tL
2 log1/6 L, C2hL3 log1/4 L) (8)

C (S)L (t, h)=La/n log1/3(L) C21W(C1tL2 log1/6 L, C2hL3 log1/4 L), a=0 (9)

where a, b, c and n are the critical exponents for the specific heat, the
magnetization, the magnetic susceptibility and the correlation length of the
infinite lattice, respectively; U, V,W and G are the corresponding finite-size
scaling functions. For h=0 they reduce to the following equations:

|ML(t)|=L −b/n log1/4(L) C2U(C1tL2 log1/6 L) (10)

U(C1tL2 log1/6 L) is identically zero for ML(t) because in the absence of
symmetry-breaking fields the average of the magnetization is identically
zero, but it is not for the absolute value of the magnetization |ML(t)|.

qL(t)=Lc/n log1/2(L) C22V(C1tL
2 log1/6 L) (11)

C (S)L (t)=La/n log1/3(L) C21W(C1tL2 log1/6 L), a=0 (12)

gL(t)=G(C1tL2 log1/6 L) (13)

These predictions (Eqs. (11)–(13)) are the same as the ones given in refs. 8
and 9. For h=0 and t=0 they reduce to the following equations:

|ML|=L −b/n log1/4(L) C2U(0, 0) (14)

qL=Lc/n log1/2(L) C22V(0, 0) (15)
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C (S)L =La/n log1/3(L) C21W(0, 0), a=0 (16)

gL=G(0, 0) (17)

U(0, 0), V(0, 0), W(0, 0) and G(0, 0) are universal. The relations with
nonzero h (Eqs. (3)–(6)) and for |ML| are new. The relations for h=0 can
be tested by simulations directly. For this purpose Monte Carlo simula-
tions with Metropolis algorithm (16) are carried out on simple hypercubic
lattices L4 of linear dimensions 4 [ L [ 16 with periodic boundary condi-
tions. At Tc fifteen independent simulations are carried out, each one
lasting 3×104 sweeps (6×104 sweeps for L=16, since Tc(16) is nearest to
Tc and the critical slowing down becomes more pronounced), for finding
the mean values and the statistical errors. In computing the data for the
finite-size scaling plots three runs are carried out at each temperature
within the interval 5.98 [ T [ 7.38 for the lattices 4 [ L [ 14. The finite-
size scaling plots for |ML(t)|, qL(t), C

(S)
L (t) and gL(t) are given in Figs. 1–4,

respectively. The specific heat CL(t) contains, in addition to the singular
part C (S)L (t), a nonsingular part given by a constant b. CL(t) is obtained
directly from the simulations and b is obtained as the value which makes
the scaled C (S)L (t) overlap best. The scaled data for different L overlap, as in

Fig. 1. The finite-size scaling plot of |ML| with b/n=1 and Tc=6.6802. The error bars are
smaller than the symbols.
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ref. 9, verifying the finite-size scaling relations given in Eqs. (10)–(13). As T
goes away from Tc the points which do not satisfy the conditions of validity
(Eq. (2)) for the finite-size scaling relations start to deviate from the curve
formed by the overlapping parts of the plots for different L. The slopes of
the straight lines fitting the log− log plots of |ML| log −1/4(L), qL log −1/2(L)
and C (S)L log

−1/3(L) at h=0 and t=0 yield the values of the critical expo-
nents b/n, c/n (Fig. 5) and a/n (Fig. 6), respectively. The Monte Carlo
simulations of comparable quality (9) give powers of log L in agreement with
the theoretical ones for qL, C

(S)
L and q (4)L . The results are affected by the

value of Tc. The values of Tc obtained by different methods are as follows:
Tc=6.6817(15) (17) (series expansion), 6.6802(2) (18) (series expansion),
6.6803(1) (18) (dynamic Monte Carlo), 6.680(1) (11) (cluster Monte Carlo),
6.680 (19) (Creutz cellular automaton). Tc=6.6817(15) and 6.680(1) are used
in ref. 9 and in refs. 19 and 20, respectively. In the present study
Tc=6.6802(2) (18) is used in finding the critical exponents and in plotting the
finite-size scaling functions. The values of the critical exponents computed
are as follows: a/n=0.01(10) (10 [ L [ 16), 0.04(6) (8 [ L [ 16) and
0.04(5) (6 [ L [ 16) for b=0, a/n=−0.01(5) (8 [ L [ 16), −0.01(4)
(6 [ L [ 16) and 0.01(3) (4 [ L [ 16) for b=−0.40(5) which makes the

Fig. 2. The finite-size scaling plot of qL with c/n=2 and Tc=6.6802. The error bars are
smaller than the symbols or have about the same size.
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Fig. 3. (a) The finite-size scaling plot of the singular part of the specific heat C (S)L =(CL−b)
with a/n=0, Tc=6.6802 and the nonsingular part of the specific heat b=0. The error bars
are smaller than the symbols or have about the same size; (b) The finite-size scaling plot of the
singular part of the specific heat C (S)L =(CL−b) with a/n=0, Tc=6.6802 and the nonsingular
part of the specific heat b=−0.40(5) which makes the plots of the scaled C (S)L overlap best.
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scaled C (S)L (t) overlap best (Fig. 3), b/n=1.02(2) (4 [ L [ 16) and
c/n=2.01(3) (6 [ L [ 16). The values of a/n for b=0 and Fig. 6 reveal
that the effect of b on the value of a/n is negligible at Tc for L \ 10. The
results of other studies using the simulations on the Creutz cellular auto-
maton are as below (b=0): a/n=−0.03 (6 [ L [ 14) (20) and c/n=1.97
(6 [ L [ 14) (20) (each data point is the result of one run which lasts 3×104

sweeps). a/n=−0.036 (4 [ L [ 16), (19) 0.006 (8 [ L [ 16), (19) −0.002 (10 [
L [ 16), (21) b/n=1.002 (4 [ L [ 16) (21) and c/n=2.003 (4 [ L [ 16) (19)

(each data point is the average of three runs each of which lasts 9.6×105

sweeps for L [ 10, 3.6×105 sweeps for L > 10). These values of a/n are in
accordance with the above conclusion about the effect of b on the value of
a/n, and the values obtained in the present study for b/n, c/n and a/n
(10 [ L [ 16, b=0) are in good agreement with them. The present results
are also in good agreement with the theoretical values a/n=0, b/n=1 and
c/n=2. For the Binder cumulant (3+gL(0))=1/QL(0)=1.92(3) is
computed for L=14, the same value as in ref. 9. Its theoretical value for
the infinite lattice is (3+G(0))=1/Q(0)=2.1884.... (22) The least-squares
best fit of the data for QL(0) to the expression QL(0)=Q(0)+p/(L2)+
q/(log L)+...... (14, 23) with Q(0), p and q being the fitting parameters, results

Fig. 4. The finite-size scaling plot of gL with Tc=6.6802. The error bars are smaller than the
symbols or have about the same size.
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Fig. 5. The log-log plot of |ML| log −1/4(L) against L within the interval 4 [ L [ 16 ( p ), and
that of qL log −1/2(L) within the interval 6 [ L [ 16 at Tc=6.6802 (× ). The slopes give
b/n=1.02(2) and c/n=2.01(3). The error bars are smaller than the symbols.

Fig. 6. The log-log plot of (CL−b) log −1/3(L) against L at Tc=6.6802. For L within the
interval 10 [ L [ 16 and b=0 ( p ), the slope gives a/n=0.01(10); for L within the interval
4 [ L [ 16 and b=−0.40(5) (× ), the slope gives a/n=0.01(3).
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in (3+G(0))=2.2(1) (4 [ L [ 16) and 2.2(2) (6 [ L [ 16). This value is in
agreement with the theoretical one and with the results of other studies:
2.17(2) obtained from the simulation of the lattice gas model by the geo-
metrical cluster Monte Carlo method, (23) and 2.16(2), 2.24(4) and 2.23(4)
obtained from the simulation of the long-range Ising models in d=1, 2 and
3 dimensions, respectively, by the cluster Monte Carlo method. (14)

The computer used is a Pentium-S with CPU at 166 Mhz. The CPU
time invested is 1010 hours for the simulations at T=Tc, and 1592 hours
for all the simulations. The corresponding values are 14 hours and 367
hours (24) in ref. 20, and 1090 hours and 10690 hours (21) in ref. 19.

ACKNOWLEDGMENT

It is a pleasure to thank a referee whose comments and suggestions
made a substantial improvement in the first version of the manuscript. The
author thanks the referees for further comments on the subsequent version.

REFERENCES

1. V. Privman (Ed.), Finite-Size Scaling and Numerical Simulation of Statistical Systems
(World Scientific, Singapore, 1990).

2. V. Privman and M. E. Fisher, Phys. Rev. B 30:322 (1984); V. Privman, in Finite-Size
Scaling and Numerical Simulation of Statistical Systems, V. Privman, ed. (World Scientific,
Singapore, 1990), pp. 1–98.

3. K. Binder, M. Nauenberg, V. Privman, and A. P. Young, Phys. Rev. B 31:1498 (1985);
E. Luijten, K. Binder and H. W. J. Blöte, Eur. Phys. J. B 9:289 (1999).

4. Ch. Rickwardt, P. Nielaba, and K. Binder, Ann. Phys. (Leipzig) 3:483 (1994); G. Parisi
and J. J. Ruiz-Lorenzo, Phys. Rev. B 54:R3698 (1996); K. K. Mon, Europhys. Lett. 34:399
(1996); H. W. J. Blöte and E. Luijten, Europhys. Lett. 38:565 (1997); M. Cheon, I. Chang,
and D. Stauffer, Int. J. Mod. Phys. C. 10:131 (1999); N. Aktekin, S. Erkoc, and M. Kalay,
Int. J. Mod. Phys. C 10:1237 (1999).

5. N. Aktekin and S. Erkoc, Physica A 284:206 (2000).
6. N. Aktekin and S. Erkoc, Physica A 290:123 (2001).
7. S. Singh and R. K. Pathria, Phys. Rev. B 38:2740 (1988).
8. J. Rudnick, H. Guo, and D. Jasnow, J. Stat. Phys. 41:353 (1985); D. Jasnow, in Finite-

Size Scaling and Numerical Simulation of Statistical Systems, V. Privman, ed. (World
Scientific, Singapore, 1990), pp. 99–140.

9. P.-Y. Lai and K. K. Mon, Phys. Rev. B 41:9257 (1990).
10. K. Binder, Phys. Rev. Lett. 47:693 (1981).
11. R. Kenna and C. B. Lang, Nucl. Phys. B 393:461 (1993).
12. E. Brezin, J. Phys. (Paris) 43:15 (1982).
13. S. Singh and R. K. Pathria, Phys. Rev. B 45:9759 (1992).
14. E. Luijten and H. W. J. Blöte, Phys. Rev. B 56:8945 (1997).
15. J. Shapiro and J. Rudnick, J. Stat. Phys. 43:51 (1986).

The Finite-Size Scaling Functions of the Four-Dimensional Ising Model 1405



16. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
J. Chem. Phys. 21:1087 (1953).

17. D. S. Gaunt, M. F. Sykes, and S. McKenzie, J. Phys. A 12:871 (1979).
18. D. Stauffer and J. Adler, Int. J. Mod. Phys. C 8:263 (1997).
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